Calculation of the EPR Parameters and the Local Structure for Fe⁺ on the Zn²⁺ Site of ZnSiP₂

Shao-Yi Wu^{a,b}, Wang-He Wei^a, and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China

Reprint requests to S.-Y.W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **59a**, 769 – 772 (2004); received March 25, 2004

The zero-field splitting D, g factors g_{\parallel} and g_{\perp} and the local structure near Fe⁺ on the Zn²⁺ site of ZnSiP₂ are calculated from high-order perturbation formulas of the EPR parameters for a $3d^7$ ion in tetragonally distorted tetrahedra based on the cluster approach. According to these studies, we find that the impurity-ligand bonding angle α_{loc} related to the fourfold axis is about 58.05° in the studied Fe⁺ impurity center, which is larger than the metal-ligand bonding angle α_{loc} 6.65° in pure ZnSiP₂. The EPR parameters based on the above angle α_{loc} agree well with the observed values. The errors of the results are analyzed.

Key words: Electron Paramagnetic Resonance (EPR); Defect Structure; Crystal- and Ligand-field Theory; Fe⁺; ZnSiP₂.